

Reg.	No.	:								*								*			

Third Semester B.Tech. Degree Examination, September 2014
(2008 Scheme)

(Special Supplementary)
08.306 : DIGITAL ELECTRONICS (T)

Time: 3 Hours

Max. Marks: 100

Answer all questions.

- a) 11.125) to 8421 code
- b) "DEC3" to ASCII
- c) 1011010.11) Excess3 to Decimal
- d) 1011101) Grea to Binary
- Simplify the given function using Boolean algebra and specify the Theorms and postulates used in each step of simplification.

$$Y = \overline{A\overline{B} + ABC} + A(B + A\overline{B})$$

3. Simplify the given function using K-Map and realize it using NOR only.

$$Y = \Pi M(0, 1, 2, 3, 4, 7).$$

- 4. Describe the applications and working of multi-vibrators using logic gates.
- 5. Define the following terms associated with Flip Flops.
 - a) skew
- b) setup time
- c) delay
- d) metastability
- Define at least four important characteristics of TTL logic family and compare the values with other logic families.
- 7. Describe the main parts of a general VHDL program and write the VHDL program for a full adder.

- 8. State and prove duality theorem with examples.
- 9. Make a detailed classification of the memories associated with digital systems.
- Describe the types of finite state machines and compare the features of synchronous and asynchronous mode of operation. (10×4=40 Marks)

PART-B

Answer any two questions from each Module. Each question carries ten marks.

Module - 1

- Explain the rules for BCD addition and design a single digit BCD adder. Explain the operation with examples.
- 12. Find the minimal sum of product for the Boolean expression

 $Y = \sum m(1, 3, 4, 5, 9, 10, 11) + \sum d(6 + 8)$ using Quine-McCluskey method.

- 13. a) Design and realize a two bit digital comparator for the output =, < and >.
 - b) Design and realize a 4 bit binary to Grey converter.

Module - 2

- 14. Design a synchronous MOD-6 counter using JK Flip Flop and explain the operation with state and timing diagram.
- 15. a) Discuss the application of shift registers and explain the operation of a 4 bit bi-directional shift register with control signals.
 - Explain the working of a TTL NAND gate with circuit diagram, truth table and voltage/current levels.
- 16. a) Realize a 3 bit up/down counter in asynchronous mode and explain the working with state and timing diagram.
 - b) Explain the working of a master-slave JK Flip Flop with schematic diagram, truth table and characteristic equation.

Module - 3

17. Describe the different types of hazards. Design and realize a circuit for the following switching function with static hazard and another one with static hazard free. Also compare the working with examples.

$$F = \sum m (0, 2, 4, 5, 8, 10, 14)$$
.

- 18. Design a Moore type synchronous sequential circuit to delect a non-overlapping sequence of "101" using T Flip Flop. Each time the sequence is found, the output (z) should be asserted. Assume the required variables and specify.
- Derive the state table and state diagram of the given sequential circuit and identify the function of the circuit.

